
"E SOFTWARE CONFIGURATOR :

AN A I D To THE INDUSI'RI& PRmCTION OF SOFTWARE

Dr. Federica Liguori Prof. 1%. Fabio A. Schreiber

Syntax S.p.A. I s t i t u t o d i Elettronica-Politecnico

V i a G.Negri 8 - Milano (I t a ly) P.za L.Da V i n c i 32-Milano (I t a ly)

The d i f f e ren t requirements of the main softwa-
r e producers - Manufacturers, Software Houses and
Users - are b r i e f ly examined.
Then the Software House problems are considered in
more d e t a i l as to the very d i f f e ren t types of soft-
ware i t must produce and as to the necessity
f u l l y u t i l i s i n g the in t e rna l know-how.

of

The col lect ion and generalization of already
produced software semi-manufactures and the diffu-
sion of t h e i r knowledge through a very concise form
of documentation, called 'Software Configurator',
i s presented a s a way for the know-how exploitation.

Key words: documentation, know-how diffusion, metho
dology, program families, software compo
nents, software production.

Introduction

Problems related to software design and produs
t i on are of outstanding importance as well f o r
computer manufacturers as f o r software houses.
Since the NATO conference of 1968 (1) d i f f e ren t
themes have been recognized to be worth of research
i n Software Engineering.
Among them, the development of tools and methodolo-
g i e s fo r software design in order t o assure the
building of ' a p r io r i ' correct programs, which gave
r i s e t o the branch of software 'philosophy' cal led
structured programming, the production of an easy
readable yet complete documentation, the developnent
of project management techniques special ly sui ted
fo r software work, work organization fo r software
production, and others.
However we must observe tha t design problems have
r i s en much more i n t e r e s t among researchers than pro-
duction problems even i f some design techniques and
some tools are d i r ec t ly relevant to the production
cycle; i t i s the case of the top-down approach, and
of the development of high l eve l programming langua
ges.

Even when work organization has been conside-
red, it was mainly i n the environment of very large
project management; i t i s the case of the 'Surgical
team' or 'Chief programmer team' concept proposed
by IBM (2) (3) (4).

In t h i s paper we w a n t t o examine the problems
of software design and production i n a Software HOE
se, where many d i f f e ren t projects are carr ied on
simultaneously and where a continuous flow of offers
and tenders making requires an extensive a c t i v i t y
of gross analysis of new systems. The software con-
f igurator i s proposed as a tool which can aid the
system analyst both i n the preliminary o f f e r and i n
the actual design and implementation phases.

The Software House Problems

Traditionally, among software producers we can
dis t inguish three classes: Computer Manufacturers,
Software Houses, and Users.

L e t u s b r i e f ly iden t i fy t h e i r character is t ics :
we mean a s a 5 a software producer employing no
more than ten t o twenty programmers on small-to-me-
dium sized programs r e fe r r ing t o problems peculiar
to the use r ' s application. This de f in i t i on theref2
r e excludes very small users who must rely upon
large Services Wlreaux o r Software Houses, and i t
excludes very large users as well, since i n this c_a
se the EDP department has the very same problems of
a Software House.

We mean a s a Manufacturer a software producer
par t icular ly involved i n 'dressing' with system
software a 'bare' machine.
This can
i f many people are involved in them, they have gene
r a l l y a unique manager responsible fo r coordinating
a l l the a c t i v i t i e s in the project i t s e l f .
Again we exclude from the manufacturer's de f in i t i on
those a c t i v i t i e s which can be assimilated t o those
of a Software House (customers support, etc.) .

r e s u l t in very large projects, but, even

The Manufacturer then i s very interested i n me
thodology issues, i n r e l i a b i l i t y , i n software ai-
s t r ibut ion and maintenance, while the User i s more
concerned with portabi l i ty , and ex tens ib i l i t y o f h i s
application programs.

Software Houses have qui te d i f f e ren t problems,
t h e i r a c t i v i t i e s ranging from system software, to
applications, t o dedicated special purpose systems.
When the personnel involved i n technical work
exceeds a score, the diffusion of the know-how on
the d i f f e ren t projects in course of development o r
already terminated becomes very d i f f i c u l t .
So people tend to specialize on a r a the r narrow
range of problems without even being interested i n
throwing a glance t o what happens a t the nearby
desk.

However many are the projects, even i f very
d i f f e ren t in nature and scope, which can benefi t of
i den t i ca l pieces of software.
For example a s t r ing analyser routine can as well
be suited f o r an assembler o r a compiler as f o r the
ve r i f i ca t ion of the input in a conversational data
col lect ion system; a routine which computes the
time elapsed between two dates can be useful t o an
inventory control system, a banking system, an ope-
r a t ing system.

However since d i f f e ren t people work a t system
software, a t dedicated systems and a t application
systems, it i s very l i k e l y t h a t the same function
be designed and implemented independently, so in-
venting the wheel again and again.
A i m of a Software House then, must be, among others,
t o avoid the production of even more new programs
in a prototypal way, while making previous experien_
ces widely known a t i t s in t e r io r .

knowledge
be available both t o system designers and t o marke-
t i n g people.
In f ac t , when proposing a system t o a customer o r
when replying t o a tender, the knowledge of the
ava i l ab i l i t y of already implemented functions can
lower noticeably the man-month count, so making
the o f f e r more convenient both from the economical
and time-of-development points of view.
On the other hand, i f the system designer i s aware
of the e d s t e n c e of pieces of software, which could
be useful to him, a t the very beginning of the de-
s ign stage, he can i n s e r t them in the system by
arranging i n advance the proper interfaces and gui-
ding the design choices, which otherwise are often
a matter of t a s t e .

Moreover i t i s e s sen t i a l t h a t this

Such a way of working will hopefully a id
producing l e s s i nd iv idua l i s t i c software which could
be even m o r e generalized.

i n

The Software Configurator: Its B a c k g m g

As mentioned in the previous section:, the pro_
blem f o r a Software House i s then twofold:: a t one
side there i s the need of knowing what can be reu-
t i l i z e d from previous experiences, a t the o t i e r
side the need of having a pool of software modules,
ranging from the s m a l l subroutine up t o the packa-
ge s ize , which can be used e i t h e r directl ,y, i f the
programing language i s compatible with the new
application,or which needs only to be coded again.

inte-
r e s t ing the works of Mc I l r o y on 'Software comF'o -
nents! (5) and o f Parnas on 'Program families ' (6).

In the f i r s t of these works the productior of
software components (routines) i s proposed in a
completely independent production cycle a s the
software which may use t h e m .
In the very same way t h a t many d i f f e ren t kinds of
r e s i s to r s , t r ans i s to r s , etc., axe produced by com-
ponent manufacturers and assembled into computor
hardware o r other e lectronic c i r c u i t s by other peg
ple, software components performing spec i f i c h-
ctions, but with d i f f e ren t l e v e l s of pirformmce
a s to precision, time-memory requirements, r e l i a b i
l i t y , etc., could be produced and used by d i f f e -
r e n t people, even by d i f f e ren t manufacturers.

Mc I l r o y anal ises all the economicil and nar-
keting implication of an independent component
subindustry, and even i f there are many arguments
which could make i t s p r o f i t s doubtful, they do no t
apply i f the components themselves are produced as
a by-product of the normal production of a Softwa-
r e House.

Hbwever, to be r ea l ly useful, software compo-
nents or semi-manufactures must be r a the r general
and possibly they must be available in several dif
f e r en t versions.
The problem then consis ts i n t racing back a l l the
design decisions which l e d to an already available
software component, designed and implemented i n
the context of some par t icular project, and tc f i rd
how it could be made more general by ident i fying
those design decisions which could give r i s e to an
e n t i r e !family' of programs and by 'hiding' them
i n perfect ly compatible 'plug-in' modules (6) (7).

T h i s (bottom-up-top-down' approach, which
s t a r t s f r o m 'home available! components to hui ld
families o f functional modules, obvious1.y requires
an ex t r a e f f o r t and investment f r o m the Software
House, but it can be w e l l worth t o reduce the over
a l l mandonth count a s f a r a s the functions are
encountered

As t o the second problem we found very

very frequently in d i f f e ren t projects.

To this end a group of people i s to be set-up,
under the responsibi l i ty o f the System Engineering
Service manager, whose task i s t o evaluate the soft
ware produced under the aspect of i ts reusability
and general izabi l i ty , and relying fo r t h e i r deck SealWh~ c r i t e r ion i s the functional one.

The f i le-cards are actual ly grouped following
the functional ordering and the functional index i s
implemented as a thumbindex.
This &&-e has been made since the most common

When some i n t e re s t ing function i s found, it i s
analysed and the specif icat ions f o r the implementa-
t i on of the relevant modules are passed to the Tech
n i ca l Service f o r real izat ion.

However, while the general analysis i n t e rns
of infomation hiding modules can generate l a rge
program families, the members of which can d i f f e r
a s to the object computer, computation accuracy,
physical implementation of data structures, etc.,
only some members w i l l actual ly be produced as com-
ponents, the others remaining as po ten t i a l i t i e s , i n
the sense t h a t only the analysis and design phases
w i l l be accomplished, while actual coding and te-
s t ing w i l l not.

xathrough a terminal and a set of information updating
and r e t r i e v a l on-line procedures.

As we mentioned in the previous section the
Software Configurator i s a s o r t of very concise do-
cumentation,yet giving a l l the information necessa-
r y i n deciding wether it i s worth-while to go deeper
i n t o the extended documentation of a ce r t a in compo-
nent.

In this section we are going t o present the
framework of a f i le-card and the in t e rna l procedures
to build and update the Software Configurator.
Le t us examine then the f i le-card structure. We
s h a l l give the heading, followed by a short expli-
cat ion of i t s contents.

Therefore fundamental prerequis i tes f o r such
action are the following:

the ava i l ab i l i t y of a very sk i l l ed
s t a f f f o r the evaluation and the reanalysis
the produced software

homogeneous development methodologies and docu -
mentation techniques a t l e a s t within the d i f f e -
r en t application sections of the company.
Modular, besides structured, software production
techniques are obviously useful tools in achie -
ving the goal.

A s to the f i r s t problem, t h a t i s the disseming

technical
of

-
t i on of the knowledge-about the ava i l ab i l i t y of
software components, we decided to use a very conci
se form of documentation f o r each component whether
i t i s actual ly implemented or it i s only a potent ia
member of an already analysed program family.
A l l the components f i le-cards are collected in a
manual, which has been cal led the 'Software c o n f i a
ra tor ' . This book i s the tool which allows the pro-
j e c t leaders and the system analysts t o see a t a
f i r s t glance i f something useful to them i s already
available.

To aid them i n the search, three kinds of in-
dexes are provided:

alphabetical ordering f o r the component names

alphabetical ordering fo r the component fun -
ct ions

alphabetical ordering f o r the hardware envi -
ronments i n which the components operate with
a sub ordering f o r software environments f o r
the same hardware.

--

1.-

2.-

3.-

4.-

5.-

Name
The name of the component i s given both in the
extended version and, i f applicable, i n
acronym form.

the

Producer

The name of the company who produced the conk
ponent. In a Software House in fac t very high
i s the probabi l i ty of using external packages,
which can nevertheless be considered as compo-
nents.
If the component i s home.made, the name of the
project-leader under the responsibi l i ty of
whom it w a s designed and implemented, i s men-
tioned.

Function

The function of the component i s concisely
explained.

Status

The s t a tus of the component (actual or poten -
t i a l) i s stated.
I f it i s an actual component it i s specified
i n which form (source o r object code) and
which supports (cards, tapes, cassettes, ...)
i t i s available.

on

Environment

5.1 Hardware

The hardware on which the component
running i s described in terms of:

i s

489

6 .-

7 .-

8 .-

9.-

5.2

A i m -

1 -
2 -

3 -
4 -
5 -

CPU: manufacturer and model
Central memory: system + user workspa
ce
Mass memories: type and amount .
Peripheral devices
Special devices: (i f applicable) mm2
ry management, f loa t ing point arithmz
tics, e tc

Software

The system software under which the compg
nent has been designed i s described i n
terms of:

- operating system - language processors -
- TP monitors

This i s not an exhaustive l i s t and the
elements mentioned above are l i s t e d only
when applicable.

f i l e management system (access method)

......

The aim f o r which the component was conceived
i n the o r ig ina l system:

- extension of ex i s t ing system software
- optimization of time/memory cons t ra in ts
- others.

Ins t a l l a t i o n

The component requirements are described in
te rns of:

- memory requirements f o r the objec t code
- memory requirements f o r t ab le s - memory requirements f o r work areas - common areas

Description

A very concise description of the component i s
made in t e rns of i t s structure, of the algo -
rithms, and of the da ta s t ruc tures it uses.

User In te r face

In this sec t ion it i s explained how to use the
component; which a re i t s input and output pars
meters, which are the control parameters, e tc .

10.- Documentation

A l l the available documentation on the
nent and i t s environment i s l i s t e d .
The documentation i t s e l f i s kept i n the
ny's l i b ra ry .

cow2

compa

When the decision of including a new comFonent
in the software configurator has been taken, $.he
System Engineering Service prepares the f i l e - ca rd
for it. Then the f i l e - ca rds a re sen t to the project
leaders, under the respons ib i l i ty of whcm the com-
ponents have been implemented, f o r checking t h e i r
correctness and completeness.

The pro jec t leader r e t a ins the responsilxility f o r
informing the SIS of any var ia t ion o r updating
which has been made on an ex is t ing component.

The final version i s then d is t r ibu ted by SIS.

Summary and Conclusion

The need of c i rcu la t ing the know-hqaw about
products developed by a Software House has l e d to
the development of a pa r t i cu la r form of documenta-
t i on under the fonn of f i l e - ca rds included in a
'Software Configurator'. In this handbook a r e inc&
ded all the pieces of software, ranging from the
complete package t o the single subroutine,
can be considered as software components of
complex systems.

which
very

Different versions of the same functional. com-
ponent, obtained a s fami l ies of programs, a re kept
f o r d i f f e ren t applications.

Presently the Software Configurator i s s t i l l
that i n an experimental stage and it i s possible

changes t o the described framework w i l l be made a2
cording t o the feedback provided by analysts and
pro jec t leaders. However the f i r s t reactions of
these 'users ' have been very favourable sincc: they
found it a use fu l t o o l and an a i d in the ea r ly de-
s ign stage.

sented.
In the Appendix one of the f i l e cards i s pre-

Bibliography

P.Naur, B.Randel1 (Ed.) - 'Softwai-e mg:inee -
ring' - Report of the NATO Science Cornittee,
Jan 1969
H . M i l l s - 'Chief Programmer Teams, p r i n d p l e ,
and procedures', I B M repor t FSC 7l-5108,
Gaithersburg, Md., 1971
F.T.Baker - 'Chief programmer team management
of production programming', IBM Sys. Journal,
11,1 (1972)
E.P.Bmoks - 'The mythical man-montht - Addi-
son-Wesley publishing Co., - 1975
M.D.Mc I l r o y - 'Mass produced software compo-
nents' , in (I)
D.L.Parnas - 'On the Design and Development of
Program Families' IEE Transaction on Software
Engineering, Vol. SE-2, no 1, March 1976

490

(7) D.L. Parnas - 'A Technique f o r Software Module
Specification with Examples' - Communication
o f the ACM, Vol. 15, No 5, May 1972

DATA HANDLING SYSTEMS

SlRUCTLTRD DATA ENTRY FILE SDE

Appendix

PRODUCER : SYNTAX SpA - M r . G. Verdi

FUNCTIONS

SDEF (Structured Data %try Fi le) allows the dynamic handling of more than one l l og ica l f i l e ' used as
i f i t were only one f i l e even with a multivolume organization.
This system i s spec ia l ly use fu l f o r 'Data Entry: l i k e applications where d i f f e ren t programs (JOB) have
t o handle more than one da ta f i l e (BATCH).

STATUS

The f i r s t version of SDEF system i s available which manages only single volume f i l e s . A second version
which provides the management of multivolume f i l e s i s available only f o r a l imited s e t of h c t i o n s
supporting a t most two volumes. The source programs of SDEF are available on tape or disk.

ENVIRONMENT

. Hardware : PDP11/35 with D K U O disk u n i t . Software : RSXllM V. 2 with F i l e Control Service

--

AIM

The main purpose of SDEF i s t o increase the fea tures of FCS a s it provides the following functions: - - -
Moreover the use of SDEF allows the reduction of the
when more than one f i l e must be contemporary opened,

-

to perform log ica l de l e t e s of records
to process a f i l e forward and backward
to a l t e rna te updating and cont ro l phases

memory space occupied by 'F i le Control Block'

I N S ' ALLATION

SDEF runs in a user par t i t ion .
Data and coding, except the common working area, occupy 5 K bytes of m a i n memory.

-~

DESCRIPTION (Single volume version)

F i le Structure

The SDEF f i l e i s organized with poin te rs t o log ica l blocks of 256 bytes each oneo It i s composed of
two par t s :
A.- f i l e description
B.- data section

A.- F i l e description
It occupies 57 blocks and it has the following structure:

- Allocation D i r e c t o q :

- Job Directory : - Batch Directoly : 32 blocks. It describes the batches allocated t o each Job, up to 64

4 blocks. It describes the data blocks occupation f o r up to 8192 data
blocks.
1 block. It describes the Jobs, f o r up to 32 contemporary Jobs.

batches per Job. Batch d i rec tory of one job i s 1 block long,

B.- Data Section
It occupies up to 8192 blocks. A da ta record i s a t most 248 byte long. Each block has the fo l lo-
wing structure: SDEF.1

49 1

. H e a d i n g : 3 w o r d s . D a t a R e c o r d .
Fig. 1 s h o w s the c o m p l e t e stmcture of the f i l e

USER INTERFACE

T h e task SDEF m a i n t a i n s the f i l e SDEF. Each operation request i s m a d e by a MACRO-I1 user p r o g r a m by
m e a n s of a proper m a c m and by a FORTRAN user p r o g r a m by m e a n s of a SU€ROUTINE CALL.
The operations provided are the f o l l o w i n g ones: . Insert JOB in the 'JOB DIRECTORY' . Write DATA RECORD i n ADD or UPDATE mode . D e l e t e JOB in the 'JOB DIRECTORY' . Insert a n e w DATA RECORD . D e l e t e BATCH in the 'BATCH DIRECTORY' . R e a d DATA RECORD preceding the l a s t one . O p e n BATCH in ADD or CHECK mode . lVIRIVAL1 write DATA RECORD . D e l e t e DATA RECORD . C l o s e BATCH . R e a d DATA RECORD . C l o s e the ISDEF-DATI f i l e

- DO WMEXTATION
Product Specification - SDEF - INPRODE - 1977 SO321

ALLOCATION
DIRECTORY

TION STATE O F THE

c

BATCH DIRECTORY

POINTER M 1st 1)ATA

POINTER TO LAST DATA
RECORD

RECORD

FOR EACH BATCH :! WORDS
.LENGIW: 32 BLOCKS

B
FLAG/ BYTE NO.

DATA RECORD

FLAG/ BYTE NO.
DATA RECORD

- - - - - - -

L
FREE SPACE

V

FLAG/ BYTE N3.

DATA RECORD

FLAG/ BYTE NO.
DATA RECORD

- - - - - - -

1 B
FREE SPACE

SDEF 2.

49 2

